Twitter

Selasa, 17 April 2012

Asam Amino

             Asam amino adalah sembarang senyawa organik yang memiliki gugus fungsional karboksil (-COOH) dan amina (biasanya -NH2). Gugus karboksil memberikan sifat asam dan gugus amina memberikan sifat basa. Dalam bentuk larutan, asam amino bersifat amfoterik: cenderung menjadi asam pada larutan basa dan menjadi basa pada larutan asam. Perilaku ini terjadi karena asam amino mampu menjadi zwitter-ion. Asam amino termasuk golongan senyawa yang paling banyak dipelajari karena salah satu fungsinya sangat penting dalam organisme, yaitu sebagai penyusun protein.

Gambar 1. Struktur Asam Amino

Fungsi biologi asam amino

1.      Penyusun protein, termasuk enzim.
2.      Kerangka dasar sejumlah senyawa penting dalam metabolisme (terutama vitamin, hormon dan asam nukleat).
3.      Pengikat ion logam penting yang diperlukan dalam dalam reaksi enzimatik (kofaktor).
Asam Amino sendiri di bagi menjadi 3 jenis :
1.      Asam amino essensial.
2.      Asam amino nonessendial.
3.      Asam amino essensial bersyarat.
            Asam amino esensial adalah asam amino yang tidak bisa diproduksi sendiri oleh tubuh, sehingga harus didapat dari konsumsi makanan. Asam amino non-esensial adalah asam amino yang bisa diprosuksi sendiri oleh tubuh, sehingga memiliki prioritas konsumsi yang lebih rendah dibandingkan dengan asam amino esensial. Asam amino esensial bersyarat adalah kelompok asam amino non-esensial, namun pada saat tertentu, seperti setelah latihan beban yang keras, produksi dalam tubuh tidak secepat dan tidak sebanyak yang diperlukan sehingga harus didapat dari makanan maupun suplemen protein.

No
Asam Amino essensial
Asam Amino non  essensial
1.     
Triptofan
Tirosin
2.     
Treonin
Sistein
3.     
Metionin
Serin
4.     
Lisin
Prolin
5.     
Leusin
Glisin
6.     
Isoleusin
Asam glutamate
7.     
Fenilalanin
Asparagin
8.     
Valin
Asam aspartate
9.     

Ariginin
10.   

Alanin
11.   

Histidin
12.   

Glutamin
 
         Berikut adalah ke-20 asam amino penyusun protein (singkatan dalam kurung menunjukkan singkatan tiga huruf dan satu huruf yang sering digunakan dalam kajian protein), dikelompokkan menurut sifat atau struktur kimiawinya:

Asam amino alifatik sederhana

  • Glisina (Gly, G)
  • Alanina (Ala, A)
  • Valina (Val, V)
  • Leusina (Leu, L)
  • Isoleusina (Ile, I)

 Asam amino hidroksi-alifatik

  • Serina (Ser, S)
  • Treonina (Thr, T)

Asam amino dikarboksilat (asam)

  • Asam aspartat (Asp, D)
  • Asam glutamat (Glu, E)

Amida

  • Asparagina (Asn, N)
  • Glutamina (Gln, Q)

Asam amino basa

  • Lisina (Lys, K)
  • Arginina (Arg, R)
  • Histidina (His, H) (memiliki gugus siklik)

Asam amino dengan sulfur

  • Sisteina (Cys, C)
  • Metionina (Met, M)

Prolin

  • Prolina (Pro, P) (memiliki gugus siklik)

Asam amino aromatik

  • Fenilalanina (Phe, F)
  • Tirosina (Tyr, Y)
  • Triptofan (Trp, W)

Kamis, 12 April 2012

Fiksasi Karbon / Reaksi Gelap


Reaksi Gelap
Reaksi gelap adalah reaksi pembentukan gula dari CO2 yang terjadi di stroma. Reaksi ini tidak membutuhkan cahaya. Reaksi terjadi pada bagian kloroplas yang disebut stroma.  Reaksi gelap pada tumbuhan dapat terjadi melalui dua jalur, yaitu siklus Calvin-Benson dan siklus Hatch-Slack. Secara umum, reaksi gelap dapat dibagi menjadi tiga tahapan (fase), yaitu fiksasi, reduksi, dan regenerasi.
Pada siklus Calvin-Benson tumbuhan mengubah senyawa ribulosa 1,5 bisfosfat menjadi senyawa dengan jumlah atom karbon tiga yaitu senyawa 3-phosphogliserat. Oleh karena itulah tumbuhan yang menjalankan reaksi gelap melalui jalur ini dinamakan tumbuhan C-3. Penambatan CO2 sebagai sumber karbon pada tumbuhan ini dibantu oleh enzim rubisco. Tumbuhan yang reaksi gelapnya mengikuti jalur Hatch-Slack disebut tumbuhan C-4 karena senyawa yang terbentuk setelah penambatan CO2 adalah oksaloasetat yang memiliki empat atom karbon. Enzim yang berperan adalah phosphoenolpyruvate carboxilase.
a. Siklus Calvin-Benson
Mekanisme siklus Calvin-Benson dimulai dengan fiksasi CO2 oleh ribulosa difosfat karboksilase (RuBP) membentuk 3-fosfogliserat. RuBP merupakan enzim alosetrik yang distimulasi oleh tiga jenis perubahan yang dihasilkan dari pencahayaan kloroplas. Pertama, reaksi dari enzim ini distimulasi oleh peningkatan pH. Jika kloroplas diberi cahaya, ion H+ ditranspor dari stroma ke dalam tilakoid menghasilkan peningkatan pH stroma yang menstimulasi enzim karboksilase, terletak di permukaan luar membran tilakoid. Kedua, reaksi ini distimulasi oleh Mg2+, yang memasuki stroma daun sebagai ion H+, jika kloroplas diberi cahaya. Ketiga, reaksi ini distimulasi oleh NADPH, yang dihasilkan oleh fotosistem I selama pemberian cahaya.
Fiksasi CO2 ini merupakan reaksi gelap yang distimulasi oleh pencahayaan kloroplas. Fi ksasi  O2 melewati proses karboksilasi, reduksi, dan regenerasi. Karboksilasi melibatkan penambahan CO2 dan H2O ke RuBP membentuk dua molekul 3-fosfogliserat(3-PGA). Kemudian pada fase reduksi, gugus karboksil dalam 3-PGA direduksi menjadi 1 gugus aldehida dalam 3-fosforgliseradehida (3-Pgaldehida). Reduksi ini tidak terjadi secara langsung, tapi gugus karboksil dari 3-PGA pertama-tama diubah menjadi ester jenis anhidrida asam pada asam 1,3-bifosfogliserat (1,3-bisPGA) dengan penambahan gugus fosfat terakhir dari ATP. ATP ini timbul dari fotofosforilasi dan ADP yang dilepas ketika 1,3-bisPGA terbentuk, yang diubah kembali dengan cepat menjadi ATP oleh reaksi fotofosforilasi tambahan. Bahan pereduksi yang sebenarnya adalah NADPH, yang menyumbang 2 elektron. Secara bersamaan, Pi dilepas dan digunakan kembali untuk mengubah ADP menjadi ATP.
Pada fase regenerasi, yang diregenerasi adalah RuBP yang diperlukan untuk bereaksi dengan CO2 tambahan yang berdifusi secara konstan ke dalam dan melalui stomata. Pada akhir reaksi Calvin, ATP ketiga yang diperlukan bagi tiap molekul CO2 yang ditambat, digunakan untuk mengubah ribulosa-5-fosfat menjadi RuBP, kemudian daur dimulai lagi.
Tiga putaran daur akan menambatkan 3 molekul CO2 dan produk akhirnya adalah 1,3-Pgaldehida. Sebagian digunakan kloroplas untuk membentuk pati, sebagian lainnya dibawa keluar. Sistem ini membuat jumlah total fosfat menjadi konstan di kloroplas, tetapi menyebabkan munculnya triosafosfat di sitosol. Triosa fosfat digunakan sitosol untuk membentuk sukrosa.
b. Siklus Hatch-Slack
Berdasarkan cara memproduksi glukosa, tumbuhan dapat dibedakan menjadi tumbuhan C3 dan C4. Tumbuhan C3 merupakan tumbuhan yang berasal dari daerah subtropis. Tumbuhan ini menghasilkan glukosa dengan pengolahan CO2 melalui siklus Calvin, yang melibatkan enzim Rubisco sebagai penambat CO2. Tumbuhan C3 memerlukan 3 ATP untuk menghasilkan molekul glukosa. Namun, ATP ini dapat terpakai sia-sia tanpa dihasilkannya glukosa. Hal ini dapat terjadi jika ada fotorespirasi, di mana enzim Rubisco tidak menambat CO2 tetapi menambat O2. Tumbuhan C4 adalah tumbuhan yang umumnya ditemukan di daerah tropis. Tumbuhan ini melibatkan dua enzim di dalam pengolahan CO2 menjadi glukosa. Enzim phosphophenol pyruvat carboxilase (PEPco) adalah enzim yang akan mengikat CO2 dari udara dan kemudian akan menjadi oksaloasetat. Oksaloasetat akan diubah menjadi malat. Malat akan terkarboksilasi menjadi piruvat dan CO2. Piruvat akan kembali menjadi PEPco, sedangkan CO2 akan masuk ke dalam siklus Calvin yang berlangsung di sel bundle sheath dan melibatkan enzim RuBP. Proses ini dinamakan siklus Hatch Slack, yang terjadi di sel mesofil. Dalam keseluruhan proses ini, digunakan 5 ATP.

Selasa, 10 April 2012

Poster Biokimia


PERTUMBUHAN DAN PERKEMBANGAN TUMBUHAN

Pertumbuhan adalah :
  • Peristiwa perubahan biologi yang terjadi pada makhluk hidup yang berupa pertambahan ukuran (volume, massa, dan tinggi)
  • Irreversibel (tidak kembali ke asal)
  • dapat diukur serta dinyatakan secara kuantitatif.
  • Auksanometer adalah Suatu alat untuk mengukur pertumbuhan memanjang suatu tanaman, yang terdiri atas sistem kontrol yang dilengkapi jarum penunjuk pada busur skala atau jarum yang dapat menggaris pada silinder pemutar.

Perkembangan adalah:
  • Proses menuju tercapainya kedewasaan atau tingkat yang lebih sempurna (kompleks).
  • Sel-sel berdiferensiasi.
  • Peristiwa diferensiasi menghasilkan perbedaan yang tampak pada struktur dan fungsi masing-masing organ, sehingga perubahan yang terjadi pada organisme tersebut semakin kompleks.
  • Proses ini berlangsung secara kualitatif.
  • Irreversible

TAHAP-TAHAP PERTUMBUHAN DAN PERKEMBANGAN PADA TUMBUHAN
TAHAP AWAL PERTUMBUHAN
  1. Mula-mula biji melakukan imbibisi atau penyerapan air sampai ukuran bijinya bertambah dan menjadi lunak.
  2. Saat air masuk ke dalam biji, enzim-enzim mulai aktif sehingga menghasilkan berbagai reaksi kimia.
  3. Kerja enzim ini antara lain, mengaktifkan metabolisme di dalam biji dengan mensintesis cadangan makanan sebagai persediaan cadangan makanan pada saat perkecambahan berlangsung.
PERKECAMBAHAN
  1. Perkecambahan terjadi karena pertumbuhan radikula (calon akar) dan pertumbuhan plumula (calon batang).
  2. Faktor yang memengaruhi perkecambahan adalah air, kelembapan, oksigen, dan suhu.
  3. Perkecambahan biji ada dua macam, yaitu:
a. Tipe perkecambahan di atas tanah (Epigeal)
Hipokotil memanjang sehingga plumula dan kotiledon ke permukaan tanah dan kotiledon melakukan fotosintesis selama daun belum terbentuk.
Contoh: perkecambahan kacang hijau.
b. Tipe perkecambahan di bawah tanah (hipogeal)
Epikotil memanjang sehingga plumula keluar menembus kulit biji dan muncul di atas permukaan tanah, sedangkan kotiledon tertinggal dalam tanah. Contoh: perkecambahan kacang kapri (Pisum sativum).
PERTUMBUHAN PRIMER
  1. Merupakan pertumbuhan yang terjadi karena adanya aktivitas meristem primer.
  2. Pertumbuhan ini disebabkan oleh kegiatan titik tumbuh primer yang terdapat pada ujung akar dan ujung batang dimulai sejak tumbuhan masih berupa embrio.
  3. Ciri-ciri jaringan meristem ini adalah mempunyai dinding sel yang tipis, bervakuola kecil atau tidak bervakuola, sitoplasma pekat dan sel-selnya belum berspesialisasi.
  4. Jaringan meristem ada dua jenis, yaitu:
a. Jaringan meristem apikal
Jaringan ini terdapat pada ujung akar dan batang, yang berfungsi untuk mewujudkan pertumbuhan primer.
b. Jaringan meristem lateral
Jaringan ini dapat membentuk pertumbuhan sekunder. Contoh yang sering kita temukan adalah kambium, jaringan ini dapat menumbuhkan pertumbuhan lateral atau menambah diameter dari bagian tumbuhan.
Kambium didapatkan pada tumbuhan dikotil dan Gymnospermae.
Contoh yang lain adalah kambium gabus yang terdapat pada batang dan akar tumbuhan berkayu atau pada bagian tumbuhan yang kena luka.
PERTUMBUHAN SEKUNDER
  1. Pertumbuhan ini terjadi pada tumbuhan Dikotiledon dan Gymnospermae.
  2. Pertumbuhan sekunder disebabkan oleh kegiatan meristem sekunder, yang meliputi:
a. Kambium gabus (felogen)
Pertumbuhan felogen menghasilkan jaringan gabus. Jaringan gabus berperan sebagai pelindung, yaitu menggantikan fungsi epidermis yang mati dan terkelupas, juga merupakan bagian dari jaringan sekunder yang disebut periderm.
b. Kambium fasis (vasikuler)
Berperan membentuk xilem sekunder ke arah dalam dan membentuk floem sekunder ke arah luar, selain itu juga menghasilkan sel-sel hidup yang berderet-deret menurut arah jari-jari dari bagian xilem ke bagian floem yang disebut jari-jari empulur.
Bagian xilem lebih tebal daripada bagian floem karena kegiatan kambium ke arah dalam lebih besar daripada kegiatan ke arah luar.
c. Kambium interfasis (intervasikuler)
Merupakan kambium yang membentuk jari-jari empulur. Tumbuhan monokotil yang tidak mempunyai kambium, tumbuh dengan cara penebalan. Tetapi pada umumnya, pertumbuhan terjadi karena adanya peningkatan banyaknya dan ukuran sel. Pertumbuhan pada tumbuhan dikotil yang berkayu menyangkut kedua aktivitas tersebut, sel-sel baru yang kecil yang dihasilkan kambium dan meristem apikal, kemudian sel-sel ini membesar dan berdifferensiasi. (Kimball, 1992: 411)
PERTUMBUHAN TERMINAL
Terjadi pada ujung akar dan ujung batang tumbuhan berbiji yang aktif tumbuh. Terdapat 3 daerah (zona) pertumbuhan dan perkembangan.
a. Daerah pembelahan (daerah meristematik)
Merupakan daerah yang paling ujung dan merupakan tempat terbentuknya sel-sel baru. Sel-sel di daerah ini mempunyai inti sel yang relatif besar, berdinding tipis, dan aktif membelah diri.
b. Daerah pemanjangan
Merupakan daerah hasil pembelahan sel-sel meristem. Sel-sel hasil pembelahan tersebut akan bertambah besar ukurannya sehingga menjadi bagian dari daerah perpanjangan. Ukuran selnya bertambah beberapa puluh kali dibandingkan sel-sel meristematik.
c. Daerah diferensiasi
Merupakan daerah yang terletak di bawah daerah pemanjangan. Sel-sel di daerah ini umumnya mempunyai dinding yang menebal dan beberapa di antaranya mengalami diferensiasi menjadi epidermis, korteks, dan empulur. Sel yang lain berdiferensiasi menjadi jaringan parenkim, jaringan penunjang, dan jaringan pengangkut (xilem dan floem).
FAKTOR-FAKTOR YANG MEMENGARUHI PERTUMBUHAN DAN PERKEMBANGAN TUMBUHAN
  1. Faktor Genetik
Setiap jenis tumbuhan membawa gen untuk sifat-sifat tertentu, seperti berbatang tinggi atau berbatang rendah. Tumbuhan yang mengandung gen yang baik dan didukung lingkungan yang sesuai akan memperlihatkan pertumbuhan yang baik pula.
B. Faktor Internal
Faktor internal yang mempengaruhi pertumbuhan, yaitu hormon. Hormon tumbuhan ditemukan oleh F. W. Went pada tahun 1928. Hormon berasal dari bahasa Yunani hormalin yang berarti penggiat. Hormon tumbuhan disebut fitohormon.
Fitohormon tersebut, yaitu:
1. Auksin atau AIA (Asam Indol Asetat)
  • Auksin merupakan senyawa asam asetat dengan gugusan indol dan derivat-derivatnya.
  • Pertama kali auksin ditemukan pada ujung koleoptil kecambah gandum (Avena sativa).
  • Pusat pembentukan auksin adalah ujung koleoptil (ujung tumbuhan).
  • Jika terkena sinar matahari, auksin akan berubah menjadi senyawa yang menghambat pertumbuhan. Hal inilah yang menyebabkan batang akan membelok ke arah datangnya cahaya, karena bagian yang tidak terkena cahaya pertumbuhannya lebih cepat daripada bagian yang terkena cahaya.
  • Fungsi auksin, yaitu:
    1. Merangsang perpanjangan sel.
    2. Merangsang pembentukan bunga dan buah.
    3. Merangsang pemanjangan titik tumbuh.
    4. Mempengaruhi pembengkokan batang.
    5. Merangsang pembentukan akar lateral.
    6. Merangsang terjadinya proses diferensiasi.
2. Gibberellin
  • Gibberellin merupakan hormon yang pertama kali ditemukan pada jamur Gibberella fujikuroii yang parasit pada tumbuhan padi. Ditemukan oleh Kuroshawa pada tahun 1926.
  • Fungsi gibberellin, yaitu:
    1. Merangsang pembelahan sel kambium.
    2. Merangsang pembungaan lebih awal sebelum waktunya.
    3. Merangsang pembentukan buah tanpa biji (partenokarpi).
    4. Merangsang tanaman tumbuh sangat cepat sehingga mempunyai ukuran raksasa. (Dwidjoseputro, 1992: 197)
3. Sitokinin
  • Sitokinin merupakan kumpulan senyawa yang fungsinya mirip satu sama lain.
  • Fungsi sitokinin yaitu:
    1. Merangsang proses pembelahan sel.
    2. Menunda pengguguran daun, bunga, dan buah.
    3. Mempengaruhi pertumbuhan tunas dan akar.
    4. Meningkatkan daya resistensi terhadap pengaruh yang merugikan, seperti suhu rendah, infeksi virus, pembunuh gulma, dan radiasi.
    5. Menghambat (menahan) menguningnya daun dengan jalan membuat kandungan protein dan klorofil yang seimbang dalam daun (senescens).
4. Gas Etilen
  • Gas etilen merupakan hormon tumbuh yang dalam keadaan normal berbentuk gas.
  • Fungsi gas etilen, yaitu:
    1. Membantu memecahkan dormansi pada tanaman, misalnya pada ubi dan kentang.
    2. Mendukung pematangan buah.
    3. Mendukung terjadinya abscission (pelapukan) pada daun.
    4. Mendukung proses pembungaan.
    5. Menghambat pemanjangan akar pada beberapa spesies tanaman dan dapat menstimulasi pemanjangan batang.
    6. Menstimulasi perkecambahan.
    7. Mendukung terbentuknya bulu-bulu akar.
5. Asam Absisat (ABA)
  • Asam absisat merupakan hormon tumbuh yang hampir selalu menghambat pertumbuhan, baik dalam bentuk menurunkan kecepatan maupun menghentikan pembelahan dan pemanjangan sel bersama-sama.
  • Fungsi asam absisat, yaitu:
a. Menghambat perkecambahan biji.
b. Mempengaruhi pembungaan tanaman.
c. Memperpanjang masa dormansi umbi-umbian.
d. Mempengaruhi pucuk tumbuhan untuk melakukan dormansi.
6. Kalin
  • Kalin merupakan hormon yang mempengaruhi pembentukan organ.
  • Berdasarkan organ yang dipengaruhinya, kalin dibedakan atas:
    1. Rhizokalin, mempengaruhi pembentukan akar.
    2. Kaulokalin, mempengaruhi pembentukan batang.
    3. Filokalin, mempengaruhi pembentukan daun.
    4. Antokalin, mempengaruhi pembentukan bunga.
7. Asam Traumalin
  • Asam traumalin disebut sebagai hormon luka/kambium karena hormon ini berperan apabila tumbuhan mengalami kerusakan jaringan.
  • Jika terluka, tumbuhan akan merangsang sel-sel di daerah luka menjadi bersifat meristem lagi sehingga mampu mengadakan pembelahan sel untuk menutup luka tersebut. Kemampuan itu disebut restitusi atau regenerasi.
  • Peristiwa ini dapat terjadi karena adanya asam traumalin (asam traumalat).
Perlu Anda ketahui selain hormon, vitamin dapat berpengaruh dalam pertumbuhan dan perkembangan, misalnya vitamin B12, vitamin B1, Vitamin B6, vitamin C (asam askorbat). Vitamin-vitamin tersebut berfungsi dalam proses pembentukan hormon dan berfungsi sebagai koenzim.
  1. Faktor Lingkungan (Eksternal)

Faktor luar yang memengaruhi pertumbuhan dan perkembangan adalah faktor lingkungan, misalnya nutrisi, air, cahaya, suhu, dan kelembapan.
a. Nutrisi
  • Nutrisi terdiri atas unsur-unsur atau senyawa-senyawa kimia sebagai sumber energi dan sumber materi untuk sintesis berbagai komponen sel yang diperlukan selama pertumbuhan.
  • Nutrisi umumnya diambil dari dalam tanah dalam bentuk ion dan kation, sebagian lagi diambil dari udara.
  • Unsur-unsur yang dibutuhkan dalam jumlah yang banyak disebut unsur makro (C, H, O, N, P, K, S, Ca, Fe, Mg).
  • Adapun unsur-unsur yang dibutuhkan dalam jumlah sedikit disebut unsur mikro (B, Mn, Mo, Zn, Cu, Cl). Jika salah satu kebutuhan unsur-unsur tersebut tidak terpenuhi, akan mengakibatkan kekurangan unsur yang disebut defisiensi.
  •  Defisiensi mengakibatkan pertumbuhan menjadi terhambat.
b. Air
  • Kekurangan air pada tanah menyebabkan terhambatnya proses osmosis. Proses osmosis akan terhenti atau berbalik arah yang berakibat keluarnya materi-materi dari protoplasma sel-sel tumbuhan, sehingga tanaman kering dan mati.
  • Fungsi air antara lain:
    1. Untuk fotosintesis.
    2. Mengaktifkan reaksi-reaksi enzim atau sebagai medium reaksi enzimatis
    3. Membantu proses perkecambahan biji.
    4. Menjaga (mempertahankan kelembapan).
    5. Untuk transpirasi.
    6. Meningkatkan tekanan turgor sehingga merangsang pembelahan sel.
    7. Menghilangkan asam absisi.
    8. Sebagai pelarut, air juga memengaruhi kadar enzim dan substrat sehingga secara tidak langsung memengaruhi laju metabolisme.
c. Cahaya
  • Cahaya mutlak diperlukan dalam proses fotosintesis.
  • Cahaya secara langsung berpengaruh terhadap pertumbuhan setiap tanaman. Pengaruh cahaya secara langsung dapat diamati dengan membandingkan tanaman yang tumbuh dalam keadaan gelap dan terang.
  • Pada keadaan gelap, pertumbuhan tanaman mengalami etiolasi yang ditandai dengan pertumbuhan yang abnormal (lebih panjang), pucat, daun tidak berkembang, dan batang tidak kukuh.
  • Sebaliknya, dalam keadaan terang tumbuhan lebih pendek, batang kukuh, daun berkembang sempurna dan berwarna hijau.
  • Dalam fotosintesis, cahaya berpengaruh langsung terhadap ketersediaan makanan.
  • Tumbuhan yang tidak terkena cahaya tidak dapat membentuk klorofil, sehingga daun menjadi pucat.
  • Panjang penyinaran mempunyai pengaruh yang spesifik terhadap pertumbuhan dan perkembangan tumbuhan.
  • Panjang periode cahaya harian disebut fotoperiode, sedangkan reaksi tumbuhan terhadap fotoperiode yang berbeda panjangnya disebut fotoperiodisme.
  • Berdasarkan persyaratan panjang hari untuk pembungaan, sebagian besar tumbuhan dibagi menjadi tiga kelompok utama, yaitu:
a. Tumbuhan berhari pendek (short day plant)
Berbunga jika panjang hari kurang dari periode kritis tertentu, misalnya kastuba (Euphorbia pulcherima), ubi jalar (Ipomoea batatas), nanas (Ananas commosus), dan padi (Oryza sativa). Panjang hari harus kurang dari 11 hingga 15 jam agar pembungaan terjadi.
b. Tumbuhan hari panjang (long day plant)
Berbunga jika panjang hari lebih dari periode kritis tertentu, misalnya tanaman jarak (Rhicinus communis) dan kentang (Solanum tuberosum). Panjang hari harus lebih dari 12 hingga 14 jam agar pembungaan terjadi.
c. Tumbuhan hari netral (day-neutral plant).
Berbunga tidak tergantung pada panjang hari, dapat menghasilkan bunga kapan saja dalam setahun, misalnya jagung (Zea mays).
d. Suhu
  • Suhu berpengaruh terhadap fisiologi tumbuhan, antara lain memengaruhi kerja enzim.
  • Suhu yang terlalu tinggi atau terlalu rendah akan menghambat proses pertumbuhan.
  • Fotosintesis pada tumbuhan biasanya terjadi di daun, batang, atau bagian lain tanaman.
  • Suhu optimum (15°C hingga 30°C) merupakan suhu yang paling baik untuk pertumbuhan.
  • Suhu minimum (± 10°C) merupakan suhu terendah di mana tumbuhan masih dapat tumbuh.
  • Suhu maksimum (30°C hingga 38°C) merupakan suhu tertinggi dimana tumbuhan masih dapat tumbuh.
e. Kelembapan
  • Kelembapan ada kaitannya dengan laju transpirasi melalui daun karena transpirasi akan terkait dengan laju pengangkutan air dan unsur hara terlarut.
  • Bila kondisi lembap dapat dipertahankan maka banyak air yang diserap tumbuhan dan lebih sedikit yang diuapkan.
  • Kondisi ini mendukung aktivitas pemanjangan sel sehingga sel-sel lebih cepat mencapai ukuran maksimum dan tumbuh bertambah besar.
  • Pada kondisi ini, faktor kehilangan air sangat kecil karena transpirasi yang kurang.
  • Adapun untuk mengatasi kelebihan air, tumbuhan beradaptasi dengan memiliki permukaan helaian daun yang lebar.
  • Oksigen
  • Untuk pemecahan senyawa bermolekul besar (saat respirasi) agar menghasilkan energi yang diperlukan pada proses pertumbuhan dan perkembangannya.

HUBUNGAN AUKSIN DENGAN BEBERAPA PROSES FISIOLOGI

Secara fisiologis fitohormon berpengaruh terhadap berbagai proses, di antaranya adalah : 

Proses pengembangan sel

Heteroauksin yang dihasilkan di bagian ujung memengaruhi sintesis enzim tertentu yang kelak akan diteruskan menuju dinding sel dan menyebabkan dinding sel menjadi elastis. Dengan adanya sifat elastis tersebut, dinding sel mudah merenggang dan dapat tumbuh memanjang.  

Fototropisme

Yaitu peristiwa pergerakan tumbuhan kearah datang nya cahaya. Cholodny dan Went menjelaskan bahwa cahaya menyebabkan terjadinya pemindahan auksin secara lateral dari bagian yang terkena cahaya menuju bagian yang tidak terkena cahaya. Dengan demikian, jumlah auksin di bagian yang gelap akan lebih banyak daripada di bagian yang terang. 

Geotropisme

Adalah pengaruh gravitasi bumi terhadap pertumbuhan yang terdiri atas : geotropisme positif (gerak akar yang mengarah ke pusat bumi) dan geotropism negative (menjauhi pusat bumi). 

Auksin dan pembentukan akar

Pemakaian berbagai macam fitohormon pada stek daun, batang dan akar dapat merangsang pertumbuhan akar, seperti auksin Indole Butirat, dan asam Naftalena Asetat. 

Partenokarpi

Adalah pembentukan buah tanpa terjadi pembuahan sehingga menghasilkan buah tanpa biji, Bunga akan secara alami memproduksi hormon tumbuhan, yang diperlukan untuk mengawali proses pembentukan buah. Seperti yang terjadi pada pisang, anggur tak berbiji, semangka tanpa biji, jeruk tanpa biji. 

Apikal dominan

Merupakan suatu gejala bahwa selama pucuk batang (tunas terminal) masih ada, pertumbuhan tunas samping (tunas lateral) akan terhambat. Kalau tunas terminal dihilangkan, tunas ketiak daun akan segera tumbuh. Pengaruh tunas pucuk (terminal) yang menekan tunas lateral disebut apikal dominan. 

Peluruhan

Peluruhan merupakan suatu proses alami yang terjadi pada bagian tumbuhan, seperti pada daun, buah, dan bunga. Peluruhan akan berlangsung karena terbentuknya suatu lapisan melintang yang sel-sel parenkimnya terpisah karena proses penuaan. Lapisan tersebut dinamakan lapisan peluruh pada tangkai daun, bunga dan buah. Jika helaian daun dipotong, tangkai daun akan meluruh karena hilangnya persediaan auksin pada daun. Akan tetapi, jika diberi auksin, peluruhan dapat dihambat.